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DYNAMICS OF MOORING CABLES IN RANDOM SEAS
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The dynamic analysis of a catenary mooring cable due to random motion of an o!shore
platform is performed in the frequency domain. The nonlinear #uid-drag force is linearized
using the statistical linearization technique. A previously developed numerical procedure based
on converting a boundary value problem to an equivalent set of initial value problems is
utilized to solve the problem, which avoids the need for modal analysis. The method is found to
be versatile for the determination of spatially varying drag and the analysis of composite cables
in a uni"ed manner. The in#uence of current on drag damping has also been investigated. The
e!ect of seabed friction damping has also been incorporated in the linearized analysis.
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1. INTRODUCTION

MOORING CABLES ARE TYPICALLY USED to maintain a #oating o!shore platform in position in
a multidirectional wave and wind environment. Recently, it has been pointed out that the
dynamic behaviour of the mooring itself can be important in calculating the response of the
#oating platform (Nakamura et al. 1991). Moreover, the hydrodynamic drag in moorings
can be a major source of damping (up to 80% of total damping), which can signi"cantly
reduce the vessel response and dynamic cable tension (Huse & Matsumoto 1989). The main
di$culty in solving the problem is that no closed-form solution is available for the dynamic
equations of motion of a cable; in addition, the presence of quadratic hydrodynamic drag
complicates the analysis further. Typically, the total damping on a #oating o!shore
structure is very low. As the dynamic response amplitude is sensitive to damping, it is
therefore necessary to make an accurate determination of the damping on the mooring
system, including that due to drag. The nonlinear drag is conventionally linearized by the
statistical linearization technique, so that approximate frequency-domain analysis can be
performed using the "nite-element technique. As the system is nonproportionally damped,
a complex eigenvalue analysis becomes essential. Moreover, it is necessary to take a large
number of elements in the computation to obtain the linearized drag damping accurately
along the length of a mooring cable. Accordingly, the problem size increases signi"cantly for
the coupled analysis of cable and vessel assembly. Sometimes, a signi"cant portion of the
cable lies on the ocean #oor, which alternately lifts o! and drops back under dynamic
conditions. This e!ect gives rise to additional complexity, as it makes the system model
time-dependent. The interaction between seabed and cable also gives rise to frictional forces
which may in#uence the dynamic response of the cable.

Extensive research has been carried out in the past concerning the dynamics of marine
cables. Some of the important studies are the following. Finite-element representations have
been developed by Peyrot (1980) and Leonard & Tuah (1989). Di!erent time-domain
0889}9746/02/020193#20 $35.00/0 ( 2002 Academic Press
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schemes have been applied by Nakamura et al. (1991) and Huang (1994) to solve the
dynamic equations of the marine cable. Triantafyllou et al. (1985) carried out, in the linear
cable dynamics, the identi"cation of interesting phenomena such as modal crossover of
symmetric and antisymmetric modes and then described the e!ects of nonlinear #uid drag,
geometric nonlinearity and cable}seabed interactions. Originally developed by Bliek (1984),
Hover et al. (1994) used a transfer matrix approach (based on a "nite-di!erence scheme) in
the frequency domain using equivalent linearization of the hydrodynamic drag. Webster
(1995) carried out extensive parametric investigations of the cable dynamic behaviour due
to harmonic support motions, using a nonlinear "nite-element technique. The important
in#uence of mooring line damping on the response of the vessel has been highlighted by
Huse & Matsumoto (1989), based on some experimental results. Some details of more
recent investigations of mooring line drag damping have been given by Brown et al. (1995).
Thomas & Hearn (1994) developed a time-domain "nite-di!erence scheme, using a lumped
mass approach to account for both the seabed friction e!ects as well as the lifting and
grounding of the seabed-lying portion of the cable. The approximate treatment of the
seabed friction in the frequency domain has been outlined by Liu & Bergdahl (1997a, b),
ignoring the lifting-o! e!ect. Liu & Bergdahl (1997b) also compared results from frequency-
and time-domain simulations. Recently, Kitney & Brown (1998) developed a time-domain
simulation technique with experimental veri"cation to determine the drag damping due to
harmonic and biharmonic support oscillation of the top end of the cable, based on
a quasistatic approach which assumes that the cable maintains its catenary pro"le at all
times.

The present work is carried out in order to study the e!ect of mooring-induced damping
on the extreme responses of a #oating body. In many circumstances, the response of
a moored #oating body is dominated by large-amplitude slow-drift resonant response to
second-order wave-induced hydrodynamic forces. The second-order force and response are
nonGaussian in a Gaussian random sea. The damping of such a system is generally small
and, as pointed out by Huse & Matsumoto (1989), the mooring line damping can constitute
a major portion of the total damping. It therefore requires accurate estimating, since the
system is very sensitive to damping. The wave frequency "rst-order wave-induced responses
can signi"cantly in#uence the mooring line drag damping, and through this the slow drift
response.

Using a nonlinear spectral analysis technique based on a Volterra series model, in
conjunction with the Kac}Seigert method, a probabilistic analysis was undertaken by
Sarkar & Eatock Taylor (2000). This led to a study of the in#uence of spatially varying
mooring line drag damping on the nonGaussian response of a #oating body moored by taut
catenaries. The aim of the present investigation was to avoid the need for time-domain
integration in evaluating random wave-induced responses, while retaining in a frequency-
domain analysis the in#uence of the spatially varying #uid drag. We have extended the
approach developed by Sarkar & Manohar (1996) for obtaining the dynamic sti!ness
matrix of a general cable element, in order to analyse the in-plane behaviour of a mooring
cable. The quadratic drag force has been linearized by using the method of stochastic
linearization. The motions of the #oating platform have been modelled as stationary
Gaussian vector random processes, which act as support excitations of the mooring cable.
The determination of linearized damping, which is an unknown function along the length of
the cable, requires the solution of an associated quasistatic boundary value problem.
Unfortunately, no closed-form solution exists for these equations. In the present approach,
the boundary value problem has been converted into an equivalent set of initial value
problems, as described in Sections 2 and 3. These are solved directly, using numerical
integration techniques. A distinguishing feature of this approach is that it avoids the need
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for carrying out a complex eigenvalue analysis which, for modal expansion methods, is an
inevitable "rst step. It can also elegantly handle the varying material and geometric
properties of a cable, such as in the case of a composite mooring system made of di!erent
segments. When a signi"cant length of a mooring cable lies on the ocean #oor, the damping
arising from the interaction of the mooring cable and the seabed due to out-of-plane motion
has also been determined in the linearized analysis. This is summarized in Section 4.
Numerical results are presented in Section 5 showing the e!ect of di!erent parameters on
the mooring line responses.

The emphasis of this work is on illustrating how the in#uence of local amplitude-
dependent drag damping can be accounted for when the cable is excited stochastically. As
far as we are aware, this has not previously been investigated in this way, and there are no
results in the literature with which ours may be directly compared. In particular, the work of
Triantafyllou et al. (1985), while bearing some similarity to the present work, does not deal
with the aspect of spatially varying drag damping induced by random excitation. We have
therefore attempted to validate our results by checking a number of standard results. This is
described in Section 5.

2. EQUATIONS OF IN-PLANE MOTION

We use a Cartesian coordinate system Oxy located at the bottom end of the cable,
with Ox pointing along the chord of the mean con"guration and Oy pointing down,
as shown in Figure 1. The motions of the right-hand end of the cable are speci"ed as X
and >. Considering the equilibrium of an in"nitesimal element of the cable shown in
Figure 1, we can write the equations governing the static pro"le and corresponding tension
¹

s
(s) as

d

ds CA
¹

s
(s)

1#¹
s
(s)/EAB

dx

dsD"m
s
g sin h, (1)
Figure 1. Schematic diagram of a mooring cable.
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d

ds CA
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g cos h, (2)

A
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dsB
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"A1#

¹
s
(s)

EA B
2
, (3)

where s is the arc length of the cable in the unstretched state, EA is the axial sti!ness of the
cable, m

s
is the mass per unit length in water, h is the inclination of the cable chord with the

horizontal and g is the acceleration due to gravity. These equations are similar to those
given by Hagedorn & SchaK fer (1980) for a horizontal cable, but modi"ed to account for the
inclination of the chord.

From equations (1)}(3), the following relationships can be obtained:

dx

ds
"
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EA B , (4)
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H(s)"H
0
#

m
s
g¸

2
sin h[(2s/¸)!1], (7)

where ¸ is the length of the unstretched cable, H(s) is the axial component of the cable
tension (i.e., in the direction of Ox) with the value H

0
at the midspan (s"¸/2). The

semianalytical solutions of equations (1)}(3) for the equilibrium positions x(s) and y(s) are
given by Irvine (1981) (although in a di!erent coordinate system). However, equations
(4)}(7) are su$cient for the linear dynamic analysis as discussed subsequently.

By considering an in"nitesimal cable element, we can de"ne the equations governing the
total dynamic displacements u

t
(s, t) and v

t
(s, t) along the directions of the x- and y-axis,

respectively, following Simpson (1972) and Hagedorn & SchaK fer (1980). The mooring cable
is assumed to have the following parameters: m is the mass per unit length of the cable
(including added mass); o

w
is the density of water; d is the diameter of the cable;

Cd
n
"1

2
o
w
C

d
d ; C

d
is the coe$cient of cable normal drag; Cs

v
and Cs

u
are structural damping

coe$cients; and <
x
and <

y
are the components of the current velocity along the cable in the

direction of u
t
(s, t) and v

t
(s, t), respectively, as shown in Figure 1. For simplicity, <

x
and

<
y
are assumed to be constant along the cable, although their variation can be incorporated

in the analysis without any substantial modi"cation. We also neglect the tangential drag on
the cable. Incorporating the e!ect of damping/drag-forces and retaining only linear terms
for small-amplitude dynamic motion, the governing equations of motion are obtained as
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In this analysis, a relative velocity form of drag loading is assumed. It should be noted that
the drag-force terms contain mean components (to be determined iteratively in the frame-
work of statistical linearization, as explained in the subsequent sections) due to the presence
of the current velocities <

x
and <

y
. Consequently, the total dynamic displacements v

t
and

u
t
will contain mean o!sets v

s
and u

s
, and zero-mean dynamic components v and u.

3. DYNAMIC STIFFNESS APPROACH

To perform the frequency-domain analysis, the nonlinear drag-force is linearized by the
well-known equivalent linearization technique (Roberts & Spanos 1990). When harmonic
excitation at frequency u acts on the cable, the system being linearized, all points oscillate
harmonically at the frequency u. One can therefore take u (s, t)"Re[u (s) exp (iut)] and
v(s, t)"Re[v (s) exp (iut)]. Consequently, the equations governing u (s) and v (s) can be
shown to be given by
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d

ds CG
¹

s
1#¹

s
/EA

#

EA

(1#¹
s
/EA)3 A

dx

dsB
2

H
du

ds
#G

EA

(1#¹
s
/EA)3

dy

ds

dx

dsH
dv

dsD
"[!mu2#iuMB

2
(s)#Cs

u
N]u, (11)

where B
1
(s) and B

2
(s) are the linearized drag-damping coe$cients along the cable. To deal

with the random excitations, equations (10) and (11) are to be solved for each frequency
where the excitation energy is present. Consequently, the frequency response functions of
the cable can be obtained to perform spectral analysis. A number of methods for stochastic
linearization of two- and three-dimensional drag-forces are available, which are based on
mean-square error minimization and invariant properties of drag-forces (Leira 1987). In the
present analysis, we neglect the chordwise relative velocity, and assume a shallow-sag cable
(B

2
"0), making the drag force one-dimensional. Assuming Gaussian response, the equiva-

lent linear form of drag force is given by (Malhotra & Penzien 1970; Wu & Tung 1975;
Paulling 1979)
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The dynamic part of the linearized drag-force (related to B
1
) is considered in equa-

tion (10). The mean equivalent drag-force FM
d

will be used to obtain the mean dynamic
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displacements v
s
and u

s
. The equations governing v

s
and u

s
can be obtained by replacing the

right-hand sides of equations (10) and (11) by FM
d
(s) and zero, respectively. It should be noted

that the zero-mean dynamic components v and u are coupled with the mean components
v
s
and u

s
through the mean drag term FM

d
. The coe$cients B

1
and FM

d
can be obtained by

iterating until convergence is achieved. It should also be noted that FM
d
is zero in the absence

of the current <
y
. Thus, the mean o!sets v

s
and u

s
are also then zero. Under the assumption

of small <
x
and <

y
, the mean o!sets v

s
and u

s
due to the mean drag-force FM

d
are insigni"cant

compared with the initial static de#ection due to gravity (in the absence of current). For
higher current velocities, the nonlinear terms in v

s
and u

s
need to be retained to obtain the

equations for the mean dynamic displacements, leading to nonlinear partial di!erential
equations. These equations will also be coupled with the linear di!erential equations
governing the zero-mean dynamic displacements. To solve the resulting complex
problem, the drag-force can be approximated as Cd

v
(s) D (<

y
!Lv/Lt)D(<

y
!Lv/Lt)

+Cd
v
(s)D<

y
D<

y
#Cd

v
(s)DLv/LtD(Lv/Lt). This commonly used approximation simpli"es the cal-

culations of the mean components v
s
and u

s
(now uncoupled from v and u) which can then be

used to update the initial con"guration x(s) and y(s) used to determine the zero-mean
dynamic displacements v and u in equations (10) and (11).

It is also worth mentioning that the same procedure can be extended directly to consider
the general case of drag forces for a cable with large sag [given in equations (8) and (9)].
However, this is algebraically more involved. As the purpose of the paper is to illustrate the
numerical scheme, we consider only the simple case of the one-dimensional drag-force.

Next, the method developed by Sarkar & Manohar (1996) is applied to solve the above
pair of equations for given displacement boundary conditions. The boundary conditions on
displacements are speci"ed as

v(0)"0; v(¸)"*
Rv
#i*

Iv
; u(0)"0; u(¸)"*

Ru
#i*

Iu
, (15)

where *
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and *
Iv

are the real and imaginary parts of v(¸). Similarly, *
Ru

and *
Iu

are the
real and imaginary parts of u(¸).

Equations (10) and (11) constitute a set of complex boundary value problems with
nonhomogeneous boundary conditions. They can be recast into a set of eight "rst-order real
equations, by introducing the variables y

k
(s), k"1, 2,2, 8 through the relations:
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Substituting these equations into equations (10) and (11), and separating real and imaginary
parts, one obtains
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These equations can be recast in the form

y@"Ay. (16)

The prime here denotes the derivative with respect to s, and A is an 8]8 matrix whose
elements are functions of s. A closed-form solution is not available for these equations.
Consequently, the boundary value problem is converted into a set of equivalent initial value
problems, and spatial marching techniques are applied to obtain the numerical solution.

3.1. EQUIVALENT SET OF INITIAL VALUE PROBLEMS

A matrix of fundamental solutions of equation (16), denoted by W(s), is obtained by solving
this equation under the initial conditions

=
ij
(s"0)"d

ij
, (17)

where d
ij

is the Kronecker delta function. Any other solution y(s) of equation (16) can be
written as a linear combination of the elements of W(s),

y(s)"W(s)a , (18)

where the vector a needs to be selected to satisfy the prescribed boundary conditions on
displacements. Thus, for the displacement boundary conditions, one obtains
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Similarly, from the boundary forces one gets
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For the speci"c case shown in Figure 1, the mooring cable is subjected to support
excitation on its right-hand end whereas the left-hand end is "xed at the ocean #oor. In this
case, the "rst four elements in vector a are zero. The remaining nonzero elements satisfy the
following equation:
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In compact form, we have
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From equation (18), the following relation can be obtained for the response of any
intermediate point in the cable:
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In concise form, we have

Y
S
"W

S
a8 . (24)

From equation (22) and (24), we get

Y
S
"W

S
W~1

L
D
L

(25)

or, introducing the matrix R, we can write

Y
S
"RD

L
. (26)

The equation relating the response at any intermediate point to the prescribed boundary
displacements X (surge) and > (heave) can be expressed as

G
v(s)

u(s)H"C
(R

11
#iR

12
) (R

13
#iR

14
)

(R
31
#iR

32
) (R

33
#iR

34
)D C

cos h !sin h

sin h cos h DG
X

>H, (27)

which can be written as

U(s)"FX, (28)
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where F is a 2]2 transfer matrix relating the intermediate displacement vector U to the
vector X of the imposed displacements at the end of the cable.

Let us assume that the power spectral density matrix S(u) of the boundary excitations is
given by

S(u)"C
S
xx

(u) S
xy

(u)

S
yx

(u) S
yy

(u)D . (29)

The response variances of v (s, t) are then given by

p2
v
(s)"P

u2

u1

[S
xx

(u)H
vx

(u)#S
yy

(u)H
vy

(u)#2ReMS
xy

(u)H
vxy

(u)N] du, (30)

where

H
vx
"DF

11
D2, H

vy
"DF

12
D2, H

vxy
"F

11
FM
12

.

Here the bar indicates the complex conjugate. Similar expressions can be derived for any
other response quantity such as dynamic cable tension, etc. Typical results are given in
Section 5.

3.2. ADDITIONALCONSIDERATION OF POINT AND DISTRIBUTED LOADS AS PARTICULAR INTEGRALS

The method is capable of handling the e!ect of distributed or lumped disturbances in terms
of a particular integral. To illustrate this point, we can consider a cable carrying a concen-
trated harmonic load with amplitude Q at a point s

0
. To obtain the particular integral, the

solution of equation (16) is obtained with initial condition y(0)H"[0, 0, 0, 0, 1, 0, 0, 0],
where * denotes matrix transposition. This is in fact the impulse response function, which
when convolved with the external excitation leads to the desired solution. This function,
y
5
(x), is the "fth column of the matrix W in equation (18). The total solution can now be

written as (Sarkar & Manohar 1996)

y (s)"W(s)a, s4s
0

"W(s)a#QP
x

s0

y
5
(s!q)d(q!s

0
) dq, s5s

0
. (31)

This formulation can be directly generalized to include the e!ects of distributed distur-
bances, in which case the convolution with the system impulse function has to be carried out
numerically. The spatial discretization of a distributed parameter system is signi"cantly
in#uenced by the presence of such e!ects when the "nite-di!erence or "nite-element method
is used.

4. OUT-OF-PLANE MOTION: EFFECT OF SEABED FRICTION
ON DRAG DAMPING

Catenary mooring cables often have a signi"cant length lying on the ocean #oor, giving rise
to frictional forces. Following Liu & Bergdahl (1997a), a Coulomb damping model has been
chosen here to represent the soil friction which resists the motion of the cable. Moreover, it
is quite reasonable to assume that out-of-plane motion of the cable will give rise to more
signi"cant frictional damping than in-plane motion, as mooring cables are generally sti! in
the axial direction. Ignoring any out-of-plane component of current, the coupling between
in-plane and out-of-plane displacements is neglected. Also neglected is the coupling between
in-plane and out-of-plane motions, due to the o!-diagonal terms in the linearized



202 A. SARKAR AND R. E. TAYLOR
drag-damping matrix which can arise when more accurate methods of multidimensional
drag-force linearization (Leira 1987) are adopted. The out-of-plane motion of the cable is
now governed by the equation of motion of a transversely vibrating string. The e!ect of
lifting-o! is neglected by assuming small-amplitude planar motion. This assumes that the
portion of the cable lying on the seabed does not change with time. Furthermore, Morison's
equation for the drag-force is assumed to be valid even for the portion of the cable in
contact with the sea#oor. Consequently, the equation of motion of the out-of-plane
displacement w(s, t) is given by

L
Ls G¹s

(s)
Lw

LsH"
L
Lt Gm (s)

Lw

LtH#Cd
w
(s) K

Lw

Lt K
Lw

Lt
#kmg

Lw/Lt

DLw/Lt D
X (¸

s
!s). (32)

The term ¸
s
denotes the length of the portion of the cable on the seabed, k is the kinematic

coe$cient of friction between the seabed and the cable, Cd
w
"1

2
o
w
C

d
d, and X represents the

unit step function indicating that the frictional force acts only on that part of the cable
which lies on the seabed. By linearizing the #uid drag and frictional force, one can express
the equation of motion in the frequency domain as

d

ds C¹s
(s)

dw

dsD"[!mu2#iuB
3
(s)]w, (33)

where B
3
(s) is the linearized damping coe$cient. Assuming that the response is Gaussian,

the distribution of the linearized damping B
3
(s) can be expressed as

B
3
(s)"S

8

n
Cd

w
p
wR
#S

2

n
kmg

pwR
X(¸

s
!s)

hgigj hgggigggj (34)
B3d B3f

Following a similar procedure to that outlined in Section 3, the linearized damping B
3
(s)

can be determined iteratively. In the next section, numerical results are presented which
show the in#uence of the seabed friction on the hydrodynamic drag acting on a mooring
cable.

5. NUMERICAL RESULTS

A computer program, based on the work of Sarkar & Manohar (1996), has been extended to
incorporate the above analysis. To validate the program, the following checks have been
made.

(i) Matching the natural frequencies with results for a cable reported in the literature
(Sarkar & Manohar 1996).

(ii) Satisfaction of reciprocity requirements of the system transfer function and symmetry
properties of the dynamic sti!ness coe$cients.s

(iii) Observation of the well-known qualitative features of resonances, antiresonances and
minima of direct and cross-receptance functions.
sThe dynamic sti!ness coe$cient between two points is de"ned as the amplitude of a harmonic force of
frequency u applied at one point which is required to produce a unit harmonic displacement at frequency u at the
other point (Paz 1985).
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(iv) Comparison with the closed-form solution for a uniformly damped string. If the
acceleration due to gravity is set to zero in the cable equations, the sag of the cable
becomes zero and it behaves like a string in its transverse vibrations. Further, if the
damping (B

1
) is assumed to be uniform along the length as an initial guess, the

following closed-form solution relates the spectrum of response to that of excitation at
any point on a horizontal cable (h"0) in the "rst iteration (see equation (13) for the
case of zero current):

S
v
(u)"K

sin(as)

sin(a¸) K
2

S
xx

(u), (35)

S
v5
(u)"u2 K

sin(as)

sin(a¸) K
2

S
xx

(u), (36)

where

a2"
(!mu2#iuB

1
)

¹
s

. (37)

From these relations, the r.m.s. velocity response (p
v5
) can be calculated along the length

of the string. The damping (B
1
) obtained in the "rst iteration by this relation is

compared with that obtained by the computer program based on the numerical
method.

For the base case, the following parameters for the mooring chain are speci"ed:
EA"5]108 N, m"135)35 kg/m, h"303, ¸"1000 m, g"9)807 m/s2, o

w
"1040 kg/m3,

C
d
"1, d"76 mm, H

0
"1)0]106 N. Both of the excitation autospectra, S

xx
and S

yy
, are

taken to be band-limited white-noise. The excitations are assumed to be independent
(S

xy
"0). The current velocity is zero. Using a "fth-order Runge}Kutta scheme, an integra-

tion step size of ¸/200 is found to give satisfactory results for all the cases considered below.
The iterations are generally observed to converge within four to seven cycles for the cases
examined here. Figure 2 shows the comparison between the analytical and numerical results
for the distribution of the damping B

1
(s) for a string obtained in the "rst iteration. In this
Figure 2. Comparison between analytical and numerical solution: **, analytical and } ) } )} , numerical.



Figure 3. E!ect of dynamic and quasistatic analysis: **, dynamic; } ) } ) } , quasistatic.
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case, B
1
(s) is assumed be uniform along the length as an initial guess, and acceleration due

to gravity is set to zero which reduces the cable dynamic equation to the equation of motion
of a tranversely vibrating string. The results show excellent agreement.

Next, the e!ect on drag damping of varying the various system parameters independently
is studied.

5.1. EFFECT OF DYNAMIC AND QUASISTATIC ANALYSIS

The distribution of the drag damping along the cable for the dynamic and quasistatic cases
is shown in Figure 3. The frequency range of the excitation is 0)5}2)0 rad/s and the variance
is 0)2 m2. Only surge motion of the free end of the cable is considered. The quasistatic case is
simulated assuming a small value of the mass/unit length m ("0)1 kg/m) in the computer
program developed for the dynamic analysis. It can be seen that the dynamic magni"cation
signi"cantly increases the drag damping for the case considered here. This fact indicates the
necessity of including cable dynamics and also points towards the limitation of the
quasistatic analysis in calculating the drag damping.

5.2. EFFECT OF EXCITATION BANDWIDTH

The excitation is considered to be spread over three di!erent ranges of frequency, but with
the same variance 0)1 m2 and central frequency 1)5 rad/s. The three ranges are 0)5}2)5, 1}2
and 1)25}1)75 rad/s. Figure 4 illustrates the results for surge motion. Figure 4(a) shows the
damping pro"les for the di!erent excitation bandwidths. The most narrow-banded excita-
tion generates the highest damping. The irregularities in the drag-damping pro"le tend to
increase with the decrease in the bandwidth of the excitation. For excitations with broader
bandwidth, several modes contribute signi"cantly to the total response, thereby making the
damping pro"le smoother along the cable. Conversely, only a few modes appear to make
the major contributions to the total response for narrow-banded excitation, and thus seem
to give rise to a relatively more irregular damping pro"le. Figures 4(b) and 4(c) present the
power spectral density of v(s, t) and the dynamic cable tension at the midspan of the cable.
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Although the amplitude of the power spectral densities increases with the decrease in the
excitation bandwidth, the response variance still decreases. This is evident considering the
areas under the power spectral densities in Figures 4(b) and 4(c). Similar results are shown in
Figure 5 for the case of heave excitation.

5.3. EFFECT OF AMPLITUDE OF EXCITATION

Three di!erent excitation variances are considered: 0)1, 0)2 and 0)3 m2. For surge excita-
tions, Figure 6(a-c) presents the damping pro"les, the power spectral densities of v (s, t) and
dynamic cable tension, respectively. Evidently, the excitation with higher amplitude induces
higher damping. However, the response amplitudes increase for the higher amplitudes of
excitation as is evident from Figures 6(b) and 6(c). Similar trends appear in the case of heave
motion, as illustrated in Figure 7.

5.4. EFFECT OF DRAG COEFFICIENT

Figure 8(a}c) presents the results for the surge motion (with a variance of 0)1 m2) for three
values of drag coe$cients (C

d
"1, 1)5 and 2). Evidently, the increase in C

d
signi"cantly

increases the drag damping as is evident from Figure 8(a). However, the decrease in the
response is less dramatic compared to the increase in drag damping, as noted from Figures
7(b) and 7(c) showing the spectra for v(s, t) and dynamic cable tension. For the case of heave
response, similar results are shown in Figure 9.

5.5. EFFECT OF COMPOSITE PROPERTIES AND CURRENT

Next, a composite mooring cable is considered. It is assumed to have three parts: two end
segments (made of chains), each of length 200 m and properties of type A, and a central
segment (made of wire rope) of length 600 m and properties of type B. The segments of type
A have the following properties: EA"5)0]108 N, m"135)35 kg/m, C

d
"1)0, d"76 mm.

The segment of type B has the following properties: EA"7)03]107 N, m"175)9 kg/m,
C

d
"1)0, d"51 mm. The tension H

0
is 600 kN. For simplicity, the static tension of the

composite line is approximated by equations (6) and (7), assuming an average value of mass
distribution m

s
. Figure 10 shows the drag-damping distribution for the case of surge

excitation with a variance of 0)2 m2. The excitation frequency ranges from 0)5 to 2)0 rad/s.
The drag damping has also been plotted under the assumption that the linearized drag is
constant along each of the segments. The segmentwise constant drag is calculated by
averaging the standard deviation of the velocity response (p

v5
) along the length of each

segment. The e!ect of uniform currents of 0)25 and 0)5 m/s on the drag damping B
1

is also
shown in Figure 10. The e!ect of mean drag force (related to FM

d
) on the static pro"le is

ignored, assuming the in#uence of current is negligible with respect to gravity on the static
pro"le for the cases considered. It can be observed that the damping distribution is almost
constant on the left end segment when there is a current. This is because the response
velocity vR (s, t) is negligible compared with current <

y
in this segment. In this case, the

expression for B
1

reduces to 2Cv
d
<
y
, and is uniform along the segment length. The power

spectral densities of v(s, t) at midspan are shown for these four cases in Figure 11. An
important observation from the response power spectral density is that the piecewise
constant damping assumption underestimates the total damping. It is also readily apparent
that current increases the damping.
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Figure 10. Drag on composite cable **, actual; } )} ) } , segmentwise constant; }} } , current e!ect
(<

1
"0)25 m/s) and ) ) ) , current e!ect (<

1
"0)5 m/s).

Figure 11. S
v
(u) at s"L/2 for di!erent cases: **, actual; ! )! )!, segmentwise constant; } } } , current

e!ect (<
1
"0)25 m/s) and ) ) ) , current e!ect (<

1
"0)5 m/s).

DYNAMICS OF MOORING CABLES IN RANDOM SEAS 209
5.6. EFFECT OF SEABED FRICTION

A mooring cable (of type A) having total length 1000 m is analysed with a length of 600 m
lying on the seabed and subject to frictional forces. The amplitude of excitation is assumed
to be small enough so that one can ignore the uplifting e!ect due to planar motion. The
frictional coe$cient k is taken to be 0)3. The excitation is assumed to be band-limited white
noise with bandwidth 0)5}2 rad/s and variance 0)05 m2. Figure 12 shows the linearized drag
damping (B

3d
) and frictional damping (B

3f
) induced in the cable (i.e., the two terms in

equation (34)) due to out-of-plane excitation at the top end. Figure 13 shows the e!ect of
seabed friction on the power spectral density of the out-of-plane displacement w(s, t) at
s"1

2
¸. In Figure 12, the drag damping pro"le is also shown when the e!ect of seabed

friction is neglected. It can be seen that when the seabed friction is neglected, a higher



Figure 12. Drag "ction damping: **, drag damping; } } }, friction damping; } ) } ) } , drag damping without
friction damping.

Figure 13. S
w
(u) at s"L/2: **, with friction damping; } ) } )} , without friction damping.
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estimate of linearized drag damping is obtained. However, the friction e!ect signi"cantly
reduces the out-of-plane response w(s, t), as shown in Figure 13.

6. CONCLUDING REMARKS

A method of analysing the dynamics of a mooring cable due to random boundary
excitations has been described, based on a previously developed technique for dealing with
the cable equation. The spatially varying #uid drag has been linearized by statistical
linearization. The linearized drag, which is an unknown function of position along the cable,
has been determined iteratively. The e!ect of current velocity on the drag-force has also
been studied. The method can analyse the varying material and geometric properties, as in
the case of a typical composite mooring cable, in a straightforward manner. It avoids the
need for complex eigenvalue analysis, arising due to nonproportional linearized #uid-drag
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damping, when "nite-element models of mooring lines are solved by modal analysis.
Further, while a large number of elements is required to determine the spatial variation of
damping using the "nite-element method, the present method overcomes this di$culty by
directly integrating the equations of motion in the spatial domain. The e!ect of the seabed
interaction has also been investigated using an approximation based on a Coulomb friction
model. The technique developed here can also be used for the linear dynamic analysis of
towed underwater cables having complex geometry.

From the point of view of previous studies, the present work di!ers as follows. In the
framework of linearized analysis, there is no discretization error involving the solution of
the boundary value problem such as is experienced when using "nite-di!erence (Bliek 1984)
or "nite-element approaches. The solution of the linear boundary value problem is exact,
except for the round-o! and truncation errors inevitably experienced in the numerical
solution of the di!erential equations. Due to the absence of the discretization error, the
present method accurately determines the system eigenvalues (natural frequencies) and
eigenfunctions (mode shapes). The approach also avoids the need for carrying out complex
eigenvalue analysis due to nonproportionality in the damping. The subsequent response
estimation by modal analysis is not corrupted by modal truncation errors. Furthermore,
only a few degrees of freedom are adequate for the dynamic analysis of the entire cable. The
method is also capable of handling the in#uence of distributed and point external distur-
bances, in the form of particular integrals. Finally, the method incorporates a probabilistic
approach, for investigating the e!ect of mooring line damping on the extreme response of
a coupled cable and #oating vessel assembly.
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